JVM-垃圾回收器

JVM-垃圾回收器

Administrator 2 2019-07-10

垃圾回收器

一 GC的分类与性能指标

  1. 按线程数分

    • 串行垃圾回收器 但CPU,配置较低,只有一条GC线程
    • 并行垃圾回收器 并发较强的CPU 多条GC
    • image-20210705091315353
  2. 按照工作模式

    • 并发式垃圾回收器

      与应用程序线程交替工作,以尽可能减少应用程序的停顿时间。

    • 独占式垃圾回收器

      一旦运行,就停止应用程序中的所有用户线程,直到垃圾回收过程完全结束。

    • image-20210705094131829

  3. 按碎片处理方式

    • 压缩式垃圾回收器

      ​ 回收完成后,对存活对象进行压缩整理,消除回收后的碎片。

    • 非压缩式垃圾回收器

      ​ 非回收碎片,再创建对象使用空闲列表。

  4. 按工作的内存区间分

    • 年轻代垃圾回收器
    • 老年代垃圾回收器

性能指标

  • ==吞吐量:运行用户代码的时间占总运行时间的比例==

    • 吞吐量就是CPU用于运行用户代码的时间与CPU总消耗时间的比值,即吞吐量=运行用户代码时间/ (运行用户代码时间+垃圾收集时间)

      • ➢比如:虚拟机总共运行了100分钟,其中垃圾收集花掉1分钟,那吞吐量就是99%
    • 这种情况下,应用程序能容忍较高的暂停时间,因此,高吞吐量的应用程序有更长的时间基准,快速响应是不必考虑的。

    • ==吞吐量优先,意味着在单位时间内,STW的时间最短==: 0.2 + 0.2 = 0.4

    image-20210705095526753

  • 垃圾收集开销:吞吐量的补数,垃圾收集所用时间与总运行时间的比例。

  • ==暂停时间:执行垃圾收集时,程序的工作线程被暂停的时间==

    • “暂停时间”是指一个时间段内应用程序线程暂停,让GC线程执行的状态

      • ➢例如,GC期间100毫秒的暂停时间意味着在这100毫秒期间内没有应用程序线程是活动的。.
    • ==暂停时间优先,意味着尽可能让单次STW的时间最短==: 0.1 + 0.1 + 0.1 + 0.1+0.1=0.5

      image-20210705095558002

  • 收集频率:相对于应用程序的执行,收集操作发生的频率。

  • ==内存占用: Java堆区所占的内存大小==

  • 快速:一个对象从诞生到被回收所经历的时间。

  • 高亮部分共同构成一个“不可能三角”。三者总体的表现会随着技术进步而越来越好。一款优秀的收集器通常最多同时满足其中的两项。

  • 这三项里,暂停时间的重要性日益凸显。因为随着硬件发展,内存占用 多些越来越能容忍,硬件性能的提升也有助于降低收集器运行时对应用程序的影响,即提高了吞吐量。而内存的扩大,对延迟反而带来负面效果。

二 不同的垃圾回收器概述

1. 垃圾回收器发展史

  • 1999年随JDK1.3.1一 起来的是串行方式的Serial GC,它是第一款GC。ParNew垃圾收集器是Serial收集器的多线程版本

  • 2002年2月26日,Parallel GC和Concurrent Mark Sweep GC跟随JDK1.4.2一起发布

  • Parallel GC在JDK6之后成为HotSpot默认GC。

  • 2012年,在JDK1.7u4版本中,G1可用。

  • 2017年,JDK9中G1变成默认的垃圾收集器,以替代CMS。

  • 2018年3月,JDK10中G1垃圾回收器的并行完整垃圾回收,实现并行性来改善最坏情况下的延迟。

----------------- 分水岭 ---------------------

  • 2018年9月,JDK11发布。引入Epsilon垃圾回收器,又被称为"No一0p (无操作) "回收器。同时,引入ZGC:可伸缩的低延迟垃圾回收器(Experimental)。

  • 2019年3月,JDK12发布。 增强G1,自动返回未用堆内存给操作系统。同时,引入Shenandoah GC:低停顿时间的GC (Experimental)。

  • 2019年9月,JDK13发布。增强ZGC,自动返回未用堆内存给操作系统。

  • 2020年3月,JDK14发布。删除CMS垃圾回收器。扩展ZGC在macOS和Windows.上的应用

2. 七款经典的垃圾回收器

  • 串行回收器:Serial. Serial Old
  • 并行回收器:ParNew. Parallel Scavenge. Parallel Old
  • 并发回收器:CMS. G1
  • image-20210705101934780

3. 七款经典的垃圾收集器与垃圾分代之间的关系

  • 新生代收集器: Serial、 ParNeW、Parallel Scavenge
  • 老年代收集器: Serial 0ld、 Parallel 0ld、 CMS
  • 整堆收集器: G1

image-20210705102026012

4. 垃圾收集器的组合关系

image-20210705102141253

注意:

  • JDK1.3到1.5默认使用SerialGC + SerialOldGC
  • JDK1.6到1.8默认是ParallerlGC + parallerlOldGC
  • JDK9及以后默认使用G1
  • CMS在9之后过期,14之后被移除

说明:

  1. 两个收集器间有连线,表明它们可以搭配使用
  2. 其中Serial 0ld作为CMS 出现"Concurrent Mode Failure"失败的后 备预案。
  3. (红色虚线)由于维护和兼容性测试的成本,JDK8过时,JDK 9中移除。
  4. (绿色虚线)JDK 14中:过时 未来会移除
  5. (青色虚线)JDK 14中:删除CMS垃圾回收器
  • 为什么要有很多收集器个不够吗? 因为Java的使用场景很多, 移动端,服务器等。所以就需要针对不同的场景,提供不同的垃圾收集器,提高垃圾收集的性能。
  • 虽然我们会对各个收集器进行比较,但并非为了挑选一个最好的收集器出来。没有一种放之四海皆准、任何场景下都适用的完美收集器存在,更加没有万能的收集器。所以我们选择的只是对具体应用最合适的收集器
  1. 查看默认的垃圾收集器

    • -XX:+PrintCommandLineFlags: 查看命令行相关参数(包含使用的垃圾收集器)
      • JDK1.8结果: +UseParallelGC +UseParallelOldGC
      • JDK11结果:+UseG1GC
    • 使用命令行指令: jinfo -flag相关垃圾回收器参数进程ID

三 Serial回收器(串行回收)

SerialGC

  • Serial收集器是最基本、历史最悠久的垃圾收集器了。JDK1.3之前回收新生代唯一的选择。
  • Serial收集器作为HotSpot中Client模式下的默认新生代垃圾收集器。
  • ==Serial收集器采用复制算法、串行回收和"Stop一 the一World"机制的方式执行内存回收。==

SerialOldGC

  • 除了年轻代之外,Serial收集器还提供用于执行老年代垃圾收集的Serial 0ld收集器。 Serial Old收集器同样也采用了串行回收 和"Stop the World"机制,只不过内存回收算法使用的是==标记压缩算法==。
  • ➢Serial 0ld是运行在Client模式下默认的老年代的垃圾回收器。
  • ➢Serial 0ld在服务端(Linux)下主要有两个用途:
    • ①与新生代的ParallelScavenge配合使用;
    • ②作为老年代CMS收集器的后备垃圾收集方案

特点

  • 这个收集器是一个单线程的收集器,但它的“单线程”的意义并不仅仅会使用一个CPU或一条收集线程去完成垃圾收集工作,更重要的是在它进行垃圾收集时,必须暂停其他所有的工作线程,直到它收集结束(Stop The World )。

    image-20210705201814064

优势

  • 简单而高效(与其他收集器的单线程比),对于限定单个CPU的环境来说,Seria1收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程收集效率。

  • 在用户的桌面应用场景中,可用内存一般不大(几十MB至一两百MB), 可以在较短时间内完成垃圾收集(几十ms至一百多ms) ,只要不频繁发生,使用串行回收器是可以接受的。

  • 在HotSpot虛拟机中,使用-XX:+UseSerialGC 表示年轻代使用SerialGC和老年代使用SerialOldGC收集器。

总结

  • 这种垃圾收集器大家了解,现在已经不用串行的了。而且在限定单核cpu才可以用。现在都不是单核的了。
  • 对于交互较强的应用而言,这种垃圾收集器是不能接受的。一般在Javaweb应用程序中是不会采用串行垃圾收集器的。

四 ParNew回收器(并行回收)

ParNew是上一个Serial的多线程版本

  • ParNew收集器除了采用并行回收的方式执行内存回收外,两款垃圾收集器之间几乎没有任何区别。ParNew收集器在年轻代中同样也是采用==复制算法==、老年代同样采用==标记压缩算法==。"Stop一 the一World"机制。

  • ParNew是很多JVM运行在Server模式下新生代的默认垃圾收集器。

  • image-20210705203727535

  • 对于新生代,回收次数频繁,使用并行方式高效。

    对于老年代,回收次数少,使用串行方式节省资源。(CPU并行 需要切换线程,串行可以省去切换线程的资源)

    由于ParNew收集器是基于并行回收,那么是否可以断定ParNew收集器的回收效率在任何场景下都会比Serial收集器更高效?

    • ➢ParNew 收集器运行在多CPU的环境下,由于可以充分利用多CPU、 多核心等物理硬件资源优势,可以更快速地完成垃圾收集,提升程序的吞吐量。
    • ➢但是在单个CPU的环境下,ParNew收 集器不比Serial收集器更高 效。虽然Serial收集器是基于串行回收,但是由于CPU不需要频繁地做任务切换,因此可以有效避免多线程交互过程中产生的一些额外开销。

    因为除Serial外,目前只有ParNew GC能与CMS收集器配合工作

  • 在程序中,开发人员可以通过选项-XX: +UseParNewGC手动指定使用.ParNew收集器执行内存回收任务。它表示年轻代使用并行收集器,不影响老年代。

  • ``-XX:ParallelGCThreads`限制线程数量,默认开启和CPU数据相同的线程数。

五 Parallel回收器(吞吐量优先)

Parallel Scavenge收集器的目标是==达到一个可控制的吞吐量==(Throughput),它也被称为吞吐量优先的垃圾收集器。

  • ➢==自适应调节策略==也是Parallel Scavenge 与ParNew一个重要区别。

  • 高吞吐量则可以高效率地利用CPU 时间,尽快完成程序的运算任务,主 要适合在后台运算而不需要太多交互的任务。因此,常见在服务器环境中使用。例如,那些执行批量处理、订单处理、工资支付、科学计算的应用程序。

  • Parallel收集器在JDK1.6时提供了用于执行老年代垃圾收集的 Parallel 0ld收集器,用来代替老年代的Serial 0ld收集器。

  • Parallel 0ld收集器采用了==标记一压缩==算法,但同样也是基于并行回收和”Stop一the一World"机制。

image-20210705204714966

  • 在程序吞吐量优先的应用场景中,Parallel 收集器和Parallel 0ld收集器的组合,在Server模式下的内存回收性能很不错。
  • 在Java8中,默认是此垃圾收集器

参数设置

  • -XX:MAxGCPauseMillis 设置垃圾回收器的最大停顿时间(STW时间)单位ms
    • 为了尽可能的将STW控制在xms内,收集器会调整应堆的大小或一些其他参数 比如STW小,则堆也小
    • 对于用户来讲停顿的时间越少越好,但是在服务端,注重高并发,整体的吞吐量。所以服务端更加适合Parallel 进行控制
  • -XX:GCTimeRatio 垃圾回收时间占总时间的比例
    • 默认为99 即垃圾回收时间不超过1%
  • -XX:+UseAdaptiveSizePolicy 是否开启具有自适应调节
    • 在这种模式下,年轻代的大小、Eden和Survivor的比例、晋升老年 代的对象年龄等参数会被自动调整,已达到在堆大小、吞吐量和停顿时间之间的平衡点。
    • 在手动调优比较困难的场合,可以直接使用这种自适应的方式,仅指 定虚拟机的最大堆、目标的吞吐量(GCTimeRatio)和停顿时间(MaxGCPauseMills),让虚拟机自己完成调优工作。

六 CMS回收器(低延迟)(9废弃,14移除)

  • 在JDK1.5时期, HotSpot推出了一款在强交互应用中几乎可认为有划 时代意义的垃圾收集器: CMS - (Concurrent -Mark -Sweep)收集器,
    这款收集器是HotSpot虚拟机中第一款真正意义上的并发收集器,它第一次实现了让垃圾收集线程与用户线程同时工作。

  • CMS收集器的关注点是尽可能缩短垃圾收集时用户线程的停顿时间。停顿时 间越短(低延迟)就越适合与用户交互的程序,良好的响应速度能提升用户体验。

    • ➢目前很大一部分的Java应用集中在互联网站或者B/S系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。CMS收集器就非常符合这类应用的需求。
  • 不幸的是,CMS 作为老年代的收集器,却无法与JDK 1.4.0 中已经存在的新生代收集器Parallel Scavenge配合工作,所以在JDK 1. 5中使用CMS来收集老年代的时候,新生代只能选择ParNew或者Serial收集器中的一个。

  • 在G1出现之前,CMS使用还是非常广泛的。一直到今天,仍然有很多系统使用CMS GC。

image-20210706093959717

  • CMS整个过程比之前的收集器要复杂,整个过程分为4个主要阶段

    • 初始标记(Initial一Mark) 阶段:在这个阶段中,程序中所有的工作线程都将会因为. “Stop一the一World"机制而出现短暂的暂停,这个阶段的主要任务仅仅只是==标记出GCRoots能直接关联到的对象==。
      一旦标记完成之后就会恢复之前被暂停的所有应用.线程。由于直接关联对象比较小,所以这里的速度非常快。

    • 并发标记(Concurrent一Mark)阶段:从GC Roots的 直接关联对象开始遍历整个对象图的过程,这个过程耗时较长但是不需要停顿用户线程,可以与垃圾收集线程一起并发运行。

    • 重新标记(Remark) 阶段:由于在并发标记阶段中,程序的工作线程会和垃圾收集线程同时运行或者交叉运行,因此为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间通常会比初始标记阶段稍长一些,
      但也远比并发标记阶段的时间短。

    • 并发清除( Concurrent一Sweep)阶段:此阶段==清理删除掉标记阶段判断的已经死亡的对象,释放内存空间。==由于不需要移动存活对象,所以这个阶段也是可以与用户线程同时并发的

  • 尽管CMS收集器采用的是并发回收(非独占式),但是在其初始化标记和再次标记这两个阶段中仍然需要执行“Stop一the一World”机制暂停程序中的工作线程,不过暂停时间并不会太长,
    因此可以说明目前所有的垃圾收集器都做不到完全不需要“Stop一the一World”,只是尽可能地缩短暂停时间。

     由于最耗费时间的并发标记与并发清除阶段都不需要暂停工作,所以整体的回收是低停顿的

  •  另外,由于在垃圾收集阶段用户线程没有中断,所以在CMS回收过程中,还应该确保应用程序用户线程有足够的内存可用。因此,CMS收集器不能像其他收集器那样等到老年代几乎完全被填满了再进行收集,
    而是当堆内存使用率达到某一阈值时,便开始进行回收,以确保应用程序在CMS工作过程中依然有足够的空间支持应用程序运行。要是CMS运行期间预留的内存无法满足程序需要,就会出现一次“Concurrent Mode Failure”失败,
    这时虚拟机将启动后备预案:临时启用Serial 0ld收集器来重新进行老年代的垃圾收集,这样停顿时间就很长了。

  • CMS收集器的垃圾收集算法采用的是标记清除算法,这意味着每次执行完内存回收后,
    由于被执行内存回收的无用对象所占用的内存空间极有可能是不连续的一些内存块,不可避免地将会产生一些内存碎片。
    那么CMS在为新对象分配内存空间时,将无法使用指针碰撞(Bump the Pointer) 技术,
    而只能够选择空闲列表(Free List) 执行内存分配。

  • 既然Mark Sweep会造成内存碎片,那么为什么不把算法换成Mark Compact呢?
    答案其实很简答,因为当并发清除的时候,用Compact整理内存的话,原来的用户线程使用的内存还怎么用呢?要保证用户线程能继续执行,前提的它运行的资源不受影响嘛。Mark Compact更适合“Stop the World”这种场景”下使用

  • CMS的优点:

    • 并发收集
    • 低延迟

CMS的弊端:

  • 1)会产生内存碎片,导致并发清除后,用户线程可用的空间不足。在无法分配大对象的情况下,不得不提前触发Full GC。
  • 2) CMS收集器对CPU资源非常敏感。在并发阶段,它虽然不会导致用户停顿,但是会因为占用了一部分线程而导致应用程序变慢,总吞吐量会降低。
  • 3) CMS收集器无法处理浮动垃圾。可能出现“Concurrent Mode Failure" 失败而导致另一次Full GC的产生。
    在并发标记阶段由于程序的工作线程和垃圾收集线程是同时运行或者交叉运行的,那么在并发标记阶段如果产生新的垃圾对象,
    CMS将 无法对这些垃圾对象进行标记,最终会导致这些新产生的垃圾对象没有被及时回收,从而只能在下一次执行GC时释放这些之前未被回收的内存空间。

参数设置

  • 一XX:+UseConcMarkSweepGC 使用CMS收集器

    • ➢开启该参数后会自动将一XX: +UseParNewGc打开。即: ParNew (Young区用) +CMS (0ld区用) +Serial 0ld(备选)的组合。
  • 一XX:CMS1ni tiatingOccupanyFraction设置堆内存使用率的阈值,一旦达到该阈值,便开始进行回收。

    • JDK5及以前版本的默认值为68
    • JDK6及以上版本默认值为92
    • ➢如果内存增长缓慢,则可以设置一个稍大的值,大的阈值可以有效降低CMS的触发频率,减少老年代回收的次数可以较为明显地改善应用程序性能。
      反之,如果应用程序内存使用率增长很快,则应该降低这个阈值,以避免频繁触发老年代串行收集器。因此通过该选项便可以有效降低Full GC的执行次数。
  • 一XX: +UseCMSCompactAtFullCollection用于指定在执行完Full GC后对内存空间进行压缩整理,以此避免内存碎片的产生。不过由于内存压缩整理过程无法并发执行,所带来的问题就是停顿时间变得更长了。

  • 一XX:CMSFullGCsBeforeCompaction设置在执行多少次Full GC后对内存空间进行压缩整理。

  • 一XX:ParallelCMSThreads 设置CMS的线程数量。

    • CMS 默认启动的线程数是(ParallelGCThreads+3)/4, ParallelGCThreads是年轻代并行收集器的线程数。当CPU资源比较紧张时,受到CMS收集器线程的影响,应用程序的性能在垃圾回收阶段可能会非常糟糕。
  • 判断使用哪种垃圾回收器

    • 如果你想要最小化地使用内存和并行开销,请选Serial GC;老年代默认使用SerialOld
    • 如果你想要最大化应用程序的吞吐量,请选Parallel GC;老年代默认使用ParallelOld
    • 如果你想要最小化GC的中断或停顿时间,请选CMS GC。老年代默认使用ParNew 备选 SerialOld

七 G1回收器:分区/垃圾优先

既然我们已经有了前面几个强大的GC,为什么还要发布Garbage First (G1)GC?

​  原因就在于应用程序所应对的业务越来越庞大、复杂,用户越来越多,没有GC就不能保证应用程序正常进行,而经常造成STW的GC又跟不上实际的需求,所以才会不断地尝试对GC进行优化。G1 (Garbage一First) 垃圾回收器是在Java7 update4之后引入的一个新的垃圾回收器,是当今收集器技术发展的最前沿成果之一。
 与此同时,为了适应现在不断扩大的内存和不断增加的处理器数量,进一步降低暂停时间(pause time) ,同时兼顾良好的吞吐量。
 官方给G1设定的目标是在延迟可控(STW)的情况下获得尽可能高的吞吐量,所以才担当起“全功能收集器”的重任与期望。

  • ​ 因为G1是一个并行回收器,它把堆内存分割为很多不相关的区域(Region) (物理上 不连续的)。使用不同的Region来表示Eden、幸存者0区,幸存者1区,老年代等。
  • ​ G1 GC有计划地避免在整个Java 堆中进行全区域的垃圾收集。G1跟踪各个Region 里面的垃圾堆积的价值大小(回收所获得的空间大小以及回收所需时间),在后台维护一个优先列表,每次==根据允许的收集时间,优先回收价值最大的Region==。
  • ​ 由于这种方式的侧重点在于区间中垃圾数目,所以我们给G1一个名字:垃圾优先(Garbage First)
  • ​ G1 (Garbage一First) 是一款面向服务端应用的垃圾收集器,主要针对配备多核CPU及大容量内存的机器,==以极高概率满足GC停顿时间的同时,还兼具高吞吐量的性能特征。==
  • ​ 在JDK1. 9版本正式启用,被Oracle官方称为“全功能的垃圾收集器” 。
  • ​ 与此同时,CMS已经在JDK 9中被标记为废弃(deprecated) 。在jdk8中还不是默认的垃圾回收器,需要使用一XX: +UseG1GC来启用。

优势

  • 兼具并行与并发

    • ➢并行性: G1在回收期间,可以有多个GC线程同时工作,有效利用多核计算能力。此时用户线程STW
    • ➢并发性: G1拥有与应用程序交替执行的能力,部分工作可以和应用程序同时执行,因此,一般来说,不会在整个回收阶段发生完全阻塞应用程序的情况
  • 分代收集

    • ➢从分代上看,==G1依然属于分代型垃圾回收器==,它会区分年轻代和老年代,年轻代依然有Eden区和Survivor区。但从堆的结构,上看,它不要求整个Eden区、年轻代或者老年代都是连续的,也不再坚持固定大小和固定数量。
    • ➢将堆空间分为若干个区域(Region) ,这些区域中包含了逻辑上的年轻代和老年代。
    • ➢和之前的各类回收器不同,==它同时兼顾年轻代和老年代。==
  • 空间整合

    • ➢CMS: “标记一清除”算法、内存碎片、若干次GC后进行一次碎片整理
    • ➢G1将内存划分为一个个的region。 内存的回收是以region作为基本单位的.Region之间是复制算法,但整体上实际可看作是标记-压缩(Mark一Compact)算法,两种算法都可以避免内存碎片。这种特性有利于程序长时间运行,分配大对象时不会因为无法找到连续内存空间而提前触发下一次GC。尤其是当Java堆非常大的时候,G1的优势更加明显。
  • ==可预测的停顿时间模型==

    • 这是G1相对于CMS的另一大优势,G1除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间不得超过N毫秒。
    • ➢由于分区的原因,G1可以只选取部分区域进行内存回收,这样缩小了回收的范围,因此对于全局停顿情况的发生也能得到较好的控制。
    • ➢G1跟踪各个Region里面的垃圾堆积的价值大小(回收所获得的空间大小以 及回收所需时间的经验值),在后台维护一个优先列表,==每次根据允许的收集时间,优先回收价值最大的Region。保证了G1 收集器在有限的时间内可以获取尽可能高的收集效率。==
    • ➢相比于CMSGC,G1未必能做到CMS在最好情况下的延时停顿,但是最差情况要.好很多。
  • 缺点

    • 相较于CMS,G1还不具备全方位、压倒性优势。比如在用户程序运行过程中,G1无论是为了垃圾收集产生的内存占用(Footprint) 还是程序运行时的额外执行负载(overload) 都要比CMS要高。
    • 从经验上来说,在小内存应用上CMS的表现大概率会优于G1,而G1在大内存应用,上则发挥其优势。平衡点在6-8GB之间。

G1回收器的过程

  • 年轻代GC (Young GC )

  • 老年代并发标记过程( Concurrent Marking)

  • 混合回收(Mixed GC )

  • (如果需要,单线程、独占式、高强度的Full GC还是继续存在的。它针对GC的评估失败提供了一种失败保护机制,即强力回收。)

    image-20210818090636748

参数设置

  • 一XX:+UseG1GC 手动指定使用G1收集器执行内存回收任务。
  • 一XX:G1HeapRegionSize 设置每个Region的大小。值是2的幂,范围是1MB 到32MB之间,目标是根据最小的Java堆大小划分出约2048个区域。默认是堆内存的1/2000。
  • 一XX:MaxGCPauseMillis 设置期望达到的最大Gc停顿时间指标(JVM会尽力实现,但不保证达到)。默认值是200ms
  • 一xX:ParallelGCThread 设置sTw.工作线程数的值。最多设置为8
  • 一XX:ConcGCThreads 设置并发标记的线程数。将n设置为并行垃圾回收线程数(ParallelGCThreads)的1/4左右。
  • 一XX:Ini tiatingHeapOccupancyPercent 设置触发并发GC周期的Java堆占用率阈值。超过此值,就触发GC。默认值是45。

G1回收器的常见操作步骤

G1的设计原则就是简化JVM性能调优,开发人员只需要简单的三步即可完成调优:

  • 第一步:开启G1垃圾收集器
  • 第二步:设置堆的最大内存
  • 第三步:设置最大的停顿时间

G1中提供了三种垃圾回收模式: YoungGC、 Mixed GC和Full GC, 在不同的条件下被触发。

适用场景

  • 面向服务端应用,针对具有大内存、多处理器的机器。
  • 最主要的应用是==需要低GC延迟,并具有大堆的应用程序提供解决方案;==
  • 如:在堆大小约6GB或更大时,可预测的暂停时间可以低于0.5秒; ( G1通过每次只清理一部分而不是全部的Region的增量式清理来保证每次GC停顿时间不会过长)。
  • 用来替换掉JDK1.5中的CMS收集器; 在下面的情况时,使用G1可能比CMS好:
    ①超过50%的Java堆被活动数据占用;
    ②对象分配频率或年代提升频率变化很大;
    ③GC停顿时间过长(长于0. 5至1秒)。
  • HotSpot垃圾收集器里,除了G1以外,其他的垃圾收集器使用内置的JVM线程执行 GC的多线程操作,而G1 GC可以采用应用线程承担后台运行的GC工作,即当JVM的GC线程处理速度慢时,系统会调用应用程序线程帮助加速垃圾回收过程。

分区region,化整为零

  使用G1收集器时,它将整个Java堆划分成约2048个大小相同的独立Region块,每个Region块大小根据堆空间的实际大小而定,整体被控制在1MB到32MB之间,且为2的N次幂,即1MB, 2MB, 4MB, 8MB, 1 6MB, 32MB。可以通过一 XX:G1HeapRegionSize设定。所有的Region大小相同,且在JVM生命周期内不会被改变。
 虽然还保留有新生代和老年代的概念,但新生代和老年代不再是物理隔离的了,它们都是一部分Region (不需要连续)的集合。通过Region的动态分配方式实现逻辑_上的连续。

image-20210706162729369

一个region 有可能属于Eden, Survivor 或者0ld/Tenured 内存区域。但是一个region只可能属于一个角色。图中的E表示该region属于Eden内存区域,s表示属于Survivor内存区域,0表示属于0ld内存区域。图中空白的表示未使用的内存空间。

G1垃圾收集器还增加了一种新的内存区域,叫做Humongous内存区域,如图中的H块。主要用于存储大对象,如果超过1. 5个region,就放到H。

设置H的原因:

  • 对于堆中的大对象,默认直接会被分配到老年代,但是如果它是一个短期存在的大对象,就会对垃圾收集器造成负面影响。为了解决这个问题,G1划分了一个Humongous区,它用来专门存放大对象。如果一个H区装不下一个大对象,那么G1会寻找连续的H区来存储。为了能找到连续的H区,有时候不得不启动Full GC。G1的大多数行为都把H区作为老年代的一部分来看待。

G1回收器垃圾回收过程

G1 GC的垃圾回收过程主要包括如下三个环节:

  • 年轻代GC (Young GC )

  • 老年代并发标记过程( Concurrent Marking)

  • 混合回收(Mixed GC )

  • (如果需要,单线程、独占式、高强度的Full GC还是继续存在的。它针对GC的评估失败提供了一种失败保护机制,即强力回收。)

  • image-20210706162819150

  • 应用程序分配内存,==当年轻代的Eden区用尽时开始年轻代回收过程==; G1的年轻代收集阶段是一个并行的==独占式==收集器。在年轻代回收期,G1 GC暂停所有应用程序线程,启动多线程执行年轻代回收。然后从年轻代区间移动存活对象到Survivor区间或者老年区间,也有可能是两个区间都会涉及。

  • 当堆内存使用达到一定值(默认45%)时,开始老年代并发标记过程。

  • 标记完成马上开始混合回收过程。对于一个混合回收期,G1 GC从老年区间移动存活对象到空闲区间,这些空闲区间也就成为了老年代的一部分。和年轻代不同,老年代的G1回收器和其他GC不同,G1的老年代回收器不需要整个老年代被回收,一次只需要扫描/回收一小部分老年代的Region就可以了。同时,这个老年代Region是和年轻代一起 被回收的。

  • 举个例子:一个web服务器,Java进程最大堆内存为4G,每分钟响应1500个请求,每45秒钟会新分配大约2G的内存。G1会每45秒钟进行一次年轻代回收,每31 个小时整个堆的使用率会达到45%,会开始老年代并发标记过程,标记完成后开始四到五次的混合回收。

八 总结

截止JDK 1.8,一共有7款不同的垃圾收集器。

1.对比

image-20210706164337791

2.组合

image-20210706164353493

3.如何选择

  • ==1.优先调整堆的大小让JVM自适应完成。==
  • ==2.如果内存小于100M,使用串行收集器==
  • ==3.如果是单核、单机程序,并且没有停顿时间的要求,串行收集器==
  • ==4.如果是多CPU、需要高吞吐量、允许停顿时间超过1秒,选择并行或者JVM自己选择==
  • ==5.如果是多CPU、追求低停顿时间,需快速响应(比如延迟不能超过1秒,如互联网应用),使用并发收集器==
  • ==官方推荐G1,性能高。现在互联网的项目,基本都是使用G1。==

最后需要明确个观点:

  • 1.没有最好的收集器,更没有万能的收集;
  • 2.调优永远是针对特定场景、特定需求,不存在一劳永逸的收集器

九 GC日志分析

通过阅读GC日志,我们可以了解Java虛拟机内存分配与回收策略。内存分配与垃圾回收的参数列表

  • -XX:+PrintGC 输出GC日志。 显示总的GC堆的变化

    • 打开GC日志:-verbose:gc

    • 这个只会显示总的GC堆的变化, 如下:

    • 输出

      [GC (Allocation Failure) 80832K一>19298K(227840K),0.0084018 secs]
      [GC (Metadata GC Threshold) 109499K一>21465K (228352K),0.0184066 secs]
      [Full GC (Metadata GC Threshold) 21 465K一>16716K (201728K),0.0619261 secs ]
      
    • 解析

      GC、Full GC: GC的类型,GC只在新生代上进行,Full GC包括永生代,新生代, 老年代。
      Allocation Failure: GC发生的原因。
      80832K一> 19298K:堆在GC前的大小和GC后的大小。
      228840k:现在的堆大小。
      0.0084018 secs: GC持续的时间。
      
  • -XX: +PrintGCDetails 输出GC的详细日志

    • 输出
    [GC (Allocation Failure) [ PSYoungGen: 70640K一> 10116K(141312K) ] 80541K一>20017K (227328K),0.0172573 secs] [Times: user=0.03 sys=0.00, real=0.02 secs ]
    [GC (Metadata GC Threshold) [PSYoungGen:98859K一>8154K(142336K) ] 108760K一>21261K (228352K),
    0.0151573 secs] [Times: user=0.00 sys=0.01, real=0.02 secs]
    [Full GC (Metadata GC Threshold) [PSYoungGen: 8154K一>0K(142336K) ] [ParOldGen: 13107K一>16809K(62464K) ] 21261K一>16809K (204800K),[Metaspace: 20599K一>20599K (1067008K) ],0.0639732 secs]
    [Times: user=0.14 sys=0.00, real=0.06 secs]
    
    • 解析:
    PSYoungGen:使用了Parallel Scavenge并行垃圾收集器的新生代GC前后大小的变化
    ParOldGen:使用了Parallel Old并行垃圾收集器的老年代Gc前后大小的变化
    Metaspace: 元数据区GC前后大小的变化,JDK1.8中引入了 元数据区以替代永久代
    xxx secs : 指Gc花费的时间
    Times: user: 指的是垃圾收集器花费的所有CPU时间,sys: 花费在等待系统调用或系统事件的时间, real :GC从开始到结束的时间,包括其他进程占用时间片的实际时间。
    
  • -XX: +PrintGCTimeStamps 输出GC的时间戳(以基准时间的形式)

    • 打开GC日志: 一verbose:gc 一XX: +PrintGCDetails 一XX:+PrintGCTimeStamps 一 XX: +PrintGCDateStamps
    • 输入信息如下:
    2019一09一24T22:1524.518+0800:3.287: [GC(Allocation Failure) [ PSYoungGen: 1361 62K一>5113K(136192K) ] 141425K一>17632K (222208K) ,0.0248249 secs] [Times: user=0.05sys=0.00, real=0.03 secs ]
    2019一09一24T22:1525.559+0800:4.329: [ GC(Metadata GC Threshold)[PSYoungGen:97578K一>10068K(274944K) ] 110096K一>22658K (360960K),0.0094071 secs]
    [Times: user=0. 00sys=0.00, real=0. 01 secs]
    2019一09一24T22:1525.569+0800:4.338: [Full GC (Metadata GC Threshold)[ PSYoungGen:10068K一>0K(274944K) ] [ ParoldGen: 12590K一>13564K (56320K) ] 22658K一>13564K (331264K) ,
    [Metaspace: 20590K一>20590K(1067008K)], 0. 0494875 secs]
    [Times: user=0.17 sys=0. 02,real=0.05 secs ]     
    
  • -XX: +PrintGCDateStamps输出GC的时间戳(以日期的形式,如2013一05一04T21 : 53:59.234+0800 )

  • -XX: +PrintHeapAtGC 在进行GC的前后打印出堆的信息

  • -Xloggc:. . /logs/gc. log日志文件的输出路径

日志分析工具使用

可以用一些工具去分析这些gc日志。
常用的日志分析.工具有: GCViewer、GCEasy、GCHisto、GCLogViewer 、Hpjmeter、garbagecat等。

X 垃圾回收器的新发展

  GC仍然处于飞速发展之中,目前的默认选项G1 GC在不断的进行改进,很多我们原来认为的缺点,例如串行的Full GC、Card Table扫描的低效等,都已经被大幅改进,例如,JDK 10以后,Fu1l GC已经是并行运行,在很多场景下,其表现还略优于Parallel GC的并行Full GC实现。
 即使是Serial GC,虽然比较古老,但是简单的设计和实现未必就是过时的,它本身的开销,不管是GC相关数据结构的开销,还是线程的开销,都是非常小的,所以随着云计算的兴起,在Serverless等新的应用场景下,Serial GC找到了新的舞台。
 比较不幸的是CMS GC, 因为其算法的理论缺陷等原因,虽然现在还有非常大的用户群体,但在JDK9中已经被标记为废弃,并在JDK14版本中移除。

JDK11 新特性

  • JEP318 : Epsilon: A No一Op Garbage Collector (Epsilon 垃圾回收器,"No一Op (无操作) "回收器) http: / /openidk.java.net/ieps/318
  • JEP333: ZGC: A Scalable Low一 Latency ;Garbage Collector (Experimental) ( ZGC:可伸縮的低延退竝坂回收器,处于试验性阶段)

Open JDK12的Shenandoah GC

  • 现在G1回收器已成为默认回收器好几年了。
  • 我们还看到了引入了两个新的收集器: ZGC ( JDK11出现)和Shenandoah(Open JDK12) 。
    • ➢主打特点:低停顿时间

Open JDK12 的Shenandoah GC:低停顿时间的GC (实验性)

  • Shenandoah,无疑是众多GC中最孤独的一个。是第一款不由Oracle公司团队领导开发的HotSpot垃圾收集器。不可避免的受到官方的排挤。比如号称OpenJDK和OracleJDK没有区别的Oracle公司仍拒绝在OracleJDK12中支持Shenandoah。
  • Shenandoah垃圾回收器最初由RedHat进行的一项垃 圾收集器研究项目PauselessGC的实现,旨在针对JVM上的内存回收实现低停顿的需求。在2014年贡献给OpenJDK。
  • Red Hat研发Shenandoah团队对外宣称,Shenandoah垃 圾回收器的暂停时间与堆大小无关,这意味着无论将堆设置为200MB还是200GB,99.9%的目标都可以把垃圾收集的停顿时间限制在十毫秒以内。不过实际使用性能将取决于实际工作堆的大小和工作负载。
  • 28
  • 这是RedHat在2016年发表的论文数据,测试内容是使用Es对200GB的维基百科数据进行索引。从结果看:
    • 停顿时间比其他几款收集器确实有了质的飞跃,但也未实现最大停顿时间控制在十毫秒以内的目标。
    • 而吞吐量方面出现了明显的下降,总运行时间是所有测试收集器里最长的。
  • Shenandoah GC的弱项:高运行负担下的吞吐量下降。
  • Shenandoah GC的强项:低延迟时间。

革命性的ZGC

官网链接
 ZGC与Shenandoah目标高度相似,在尽可能对吞吐量影响不大的前提下,实现在任意堆内存大小下都可以把垃圾收集的停顿时间限制在十毫秒以内的低延迟。
 《深入理解Java虚拟机》一书中这样定义ZGC: ZGC收集器是一款基于Region内存布局的,(暂时) 不设分代的,使用了读屏障、染色指针和内存多重映射等技术来实现可并发的标记一压缩算法的,以低延迟为首要目标的一款垃圾收集器。
 ZGC的工作过程可以分为4个阶段:并发标记一并发预备重分配一并发重分配一并发重映射等。
 ZGC几乎在所有地方并发执行的,除了初始标记的是sTW的。所以停顿时间.几乎就耗费在初始标记上,这部分的实际时间是非常少的。

在ZGC的强项停顿时间测试上,它毫不留情的将Parallel、G1拉开了两个数量级的差距。无论平均停顿、958停顿、998停顿、99. 98停顿,还是最大停顿时间,ZGC 都能毫不费劲控制在10毫秒以内。

JDK14新特性

JEP 364: ZGC应用在macOS上
JEP 365: ZGC应用在windows上 JDK14之前,ZGC仅Linux才支持

  • 尽管许多使用ZGC的用户都使用类Linux的环境,但在Windows和macOS 上,人们也需要ZGC进行开发部署和测试。许多桌面应用也可以从ZGC中受益。因此,ZGC特性被移植到了Windows和macOs.上。
  • 现在mac或Windows 上也能使用zGC了,示例如下: 一XX: +Unloc kExperimentalVMOptions 一XX: +UseZGC .

其他垃圾回收器:AliGC

AliGC是阿里巴巴JVM团队基于G1算法,面 向大堆(LargeHeap)应用场景。指定场景下的对比:

当然,其他厂商也提供了各种独具一格的GC实现,例如比较有名的低延迟GC